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This' report presents a summary of the mathematical equations contained
in the N-STAGE missile simulation program. This program, written for the
IBM T090 digital computer, is designed to be a flexible, high speed computation
tool, useful for guidance system analysis, trajectory design, hardware
evaluation, or post-flight analysis of any current or proposed missile system.
The simulation is generally complete and in most instances accuracy will be
limited only dy the accuracy of the imput data.

Currently, work is proceeding vhich will add the effects of missile
rotational inertia to the simulation.

The mathematical model ised is fundamentally simple. The forces acting
on an assumed "pcint mass" are computed and divided by the mass of the migsile
to obtain accelerations. These accelerations are added vectorially to that of
gravity and numerically integrated to obtain a velocity increment over a short
period of time. The velocity is numerically in‘agrated to obtain a position
increment for the same period of time. As this process is repeated, the normal
output of the simulation is the time history of a trajectory.

Discortinuities in the trajectory, such as stagings, jettisons, etc., are
functions of input data and are treated logically by the program.

In addition to the quantities necessary to the similation, other descriptive

quantities are computed and printed.
For design and post-flight analysis pmoblems, automatic iterations (over

traject-riec ,r part. : trajectories) may be made by the program. The iteration

techniq.es allcw any nunber ¢f input parameters to be found, with reference to
values for any number of fundamental or descriptive quantities. Maximization or
minimization may also be accomplished, with or without the presence of other
constiraints.

Although numerical integration is at the heart of the program, no statement

of the integration techniques used is here made. The interested reader is referred

to any standard numerical enalysis text for a discussion of Runge-Kutts and
Adams -Moulton integration techniques.
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Derivatives of Equations of Motion

All of the basic computations are carried out in a Cartesian inertial system
having its origin at the center of the reference ellipsoid. The x and y axis pass
through the equator and the z axis is along thc polar exis. (Fig. 1)

Missile attitude determines the directions o‘f_. the force vectors. Mutually
perpendicular unit vectors are defined such that § points along the missile roll

axis, 7| lies in the pitch plane, and C lies in the yaw plane. (Fig. 1)

Thrust and Mass Flow

are given by
Fee =K ¥y
ﬁ:xg;iﬁo

wvhere
F_, }310 may result from a table interrogation or from the Atlas Influence

Coefficient Engine Model.

Velocity relative to air mass is

P5(+Qey-vwx7

Vo = y-Qex-wa
z+ 0 -V

vz

where wind velocity components are

Wi ¢ R > 2] 1/2 e 5 o 1/2
‘r{ X+ y X~ o+ y
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E(roll axis)

o, (pitch axis)

~
Y
«

CARTESTAN INERTIAL TOORDINATE SYSTEM WITH ATTITUDE UNIT VECTORS

FIGURE 1



Derivatives of Equations of Motion

Thrust and Mass Flow (Cont'a)

- yz x
T T
r{ (xX°+y X +y
1/2
o]
vvz = V¢ —rtl ]
and
W 4" v, Kp cosA, (north component of wind)
W, o=V, Kp sinA, (east component of wind)

Atmospheric quantities p (aluga/ft3), C (ft/sec), T (deg Rankine) and P (l'bs/inz)
are determined by approximation to the ARDC model of 1959 and are availsble to 2.3 million
feet of altitude.

Radius at sea level

- 1 z2 3 zh
RsL=A[l-§-(k—) +g(k""')]

[#]

2]

where

.2 2e - e
K = = 5
(1-e)"

~  ellipticity (flattening)
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Derivatives of Equations of Motion

Thiust and Mass Flow (Cont'd)

. .‘u;ll 43 \L"s'lbel
' l
a

Dynamic pressure

N =
m

.

@=zo [7[°

Aerodynamic Drag

F§D=CDQS

where CD 18 obtained from a table, normally as a function of Nm‘

Center of Gravity Offset Force

§CG (See Fig. 3) is cbtained directly from a table or §CG is obtaiped from a
table and

§cc =L- §co

where §CG is nose to cinter of gravity distance ajiong §a.xis. The CG distances
in the 7( direction mco) and gdirection (C CG) are tsbular.

Center of gravity offset forces due to drag in T( and C directions are
ChG
)

My Ty (T

cG
)

R IS (C___
ACD ‘gD ECG
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Derivatives of Equations of Motion

Center of Gravity Offset Force (Cont'd)

Center of gravity offset forces due to thrust misaligmment in 7? and C directions
Fn = § (%_C_}_)
F F ce

Coo
e B

Aerodynamic Normal Force

—
——
Pitch and yaw components of angle of attack (a), angle between § end V,, ere

determined from

] 1/2

tan a = tanza +ta.n2a
P hg

f the approximation is used, ap and ay are assumed equal, respectively, to tan ap and

tan @ .
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_ﬁ (yaw axis)

=

{ (piteh axis)

ANGIES OF ATTACK

FIGURE 2




Derivatives of Equations of Motion

Aerodynamic Normal Force (Cont'd)

Aerodynamic normal force coefficients in the pitch and yav planes (CN B CN )

P Yy
may be presented as tabular functions of ap, ay and Nm. When CN and
P
CN are presented a
Ya
C = C Q.
N R P
P Py
C = a
N, = Oy
y vg Y

or, a tabular normal force coefficient may be entered directly or as a function of
total angle of attack:

cC, =¢C a
N Na
tan ¢
Cy = ftma (O
P
tan
CN " tan a (CN)
y
Either £cp are obtained directly from a table or § are obtained

& 1.

from a table and

wioeere N sr> .he nose to center of pressure distences in the pitch and yaw planes

axtn {(Fig. 2)




CENTER OF GRAVITY

FIGURE 3
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Derivatives of Enmatioma of Motfom

Aerodyneumnic Normal Force (Cont'd)

Aerodynamic normel forces in TI eand C directions are

3

cp

'TZN " =

b

If

§cp (or fcp ) is not supplied, fq,n (or fcpn) 1s used in both planes.

Resultant Eorces

T

F

U MR S

Fg = §N+F§F-F€D

b

i

i

v (KRR

A P R sy e

it IR
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Gravity (Cont'a)
« o3
YRR

5,
s

p-

L.

72 + & &9- ;
o+ a2

L

Derivetives of Equations of Motion

e et
FE 53 = ‘RP

and J, H and D are constants.

small changes i1, 2 position.

Accelerstion

<.}
]
wi=

> .
VeV

included:

i

SBSIRs~

F§D
JiA|

]:a

in the case of spherical body drag

2o o+
l'

€ and €, optionally need not de recomputed for

In this case ablation effects may be

where RH and R_ are tabular mass and cross-sectional ares ratio fectors

2
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Derivatives of Equations of Motion

Integrals for Veloceity, Position and Mass

| - - '
vV = v dt ’ '
— -l
r = Vv 4t
uafrk at

Turning Rate Options

Several computed turning rate options are available. In each option the rate
computed (wk) is limited to :_20 per integration cycle.
Zero lift flight (gravity turn)

Initially orient V to obtain @ = O

R EA I

then

- -y - —_—
V = {? X +V +V
0 a v

and compute pitch and yaw rates to maintein a constant attitude relationship

—

—
between § and Va

= =
n-v

= - =




De;-;,mti.ves of Equations of Motion

Turning Rate Options (Cont'd)

where

Vax = ¥y ¢ [(".)z * (Vn)a]

x° + ¥

We ¥

P Qv - (O

£ + 5%

(W) x =z

=

. {48 \
TAX + )

(HJ) Yy

VW2 =
3 o+ A

Poge 12




Derivatives of Equstions of NoULGh

Turning Rate Options (Cont'd)

Roll to maintain pitch plane through center of Cartesian inertial system

Note that cnr g is indeterminant during verticel rise.

Instentaneous turns about pitch, yaw and/or roll axes (Fig. 2).

—
a——

e
_ § = §o c‘oaQp - 720 sinOP
n

—

——
= §o sinOP + TIO cosOP

e}

£
— —
?n §o cosGy + §° smey

Page 13
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Page 1k
Derivatives of Equations of Motion §
Turning Rate Options (ci.at'a) s Tur:
Obtein a specified epsilon local (GLS)(see below) 1in a specified time (At)
from the current eL(exn)
€ =~ € ;
" |
re Ab :
' i
where - Pt
€ 1s the angle between § and T. (Fig. 6)
Obtain eI‘B immediately from g‘c 3
WYee, -¢
Iy Lo
- ey ey
§= § cos\y- n sinw
o o) ]
el
iy - E
n-= f stn¥ + n cos'Y ]
o o €<
= S,
Make €, =B angle between T end V (Fig. 5)
B, - €
w = : m + €
hol:4 ot L

vwhere Bt ig the computing increment and

[v] s1n Py

¢ ?'

”
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Derivatives of Bquations of Motion

Turning Rate Optlons (Cont'd)

Maintain a specified €,

o,

€ - €
-_I;N__—E-t— + €
pg Ot

L

wvhere GLH is the eL to be maintained.

Integrals for Attitude

Integrands for attitude are

< -
-t
§=-Tlmp+¢my
- - .
C='§wy+n “r
Attitudes are
— -
§=[ £ at
- -t
SR
- o —
N=¢x§
wvhere
wp:wpgoertmpt+wpc+mpd
mj: ngerytwyt+wyc+wyt‘
u)*‘:mr(.;m. w rt+wrc+m‘d



Auxilieary Computations

Descriptive Quantities

Those equations specify some descriptive quantities used for special purposes
and/or print cut.

Angle between _f: and T (Fig. %)

p = cos’ :I;:‘l o=p=18&°
a

By = cos_ FT .x;JI; 0=p; = 180°

TS R TRURT) IR

Angle betveen T and § (Fig. 6)

—b

1 T §
€, = co8 <

L —F;-I—- 0= ¢ = 160°

Angle between £ and launch vertical (éL) (Fig. 7)

sl it it ke L

-

€ = cos”t §§L 0=¢=18°

-—
Azimuth from north of § projected on a plane ncrmel toT
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EPSILON LOCAL
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Auxiliary Computations

Descri; tive Quantities (Cont'd)

Normalized unguiar momentum
RVEB = 'r, lv] sin B
Ratio squared of velocity to circular orbital velocity

-lo ..
RV&G-M

%

- Total energy

vl2
v
ENGY = 3 -

e

. Vis vive energy
VVEN = 2 ENGY
8ensed velocity
Vg = (Vv - g) dat
Aerodynamic heating
HA‘_]QVa‘“

Geodetic latitude (°n) end longitude (¢)(¥ig. 8)

A

-1

2.2 232
(1-e)"(x"+ y°)

¢ = [tm‘l ()l‘)] £+
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TRt

LATTTUDE ¢ LONGITUDE

FIGURE 8
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Auxiliary Computations

Descriptive Quantities {(Cont'd) " De:

¢ = ten™t z
¢ 2 2.3/% :
(x° + ¥°) :
Circular range (R) between two positions on the spheroid, where (@, ¢l)
{geocentric latitude, longitude) defines the first positionm, (@ 2’ ¢2) defines the

second, and r o ig the radius of the spheroid, is given by

E., = sinocl sind , + c:osG(::L cme.Ocz cms(;i!2 - ¢l)

Y
It
!‘y > ,99998, then

- ' 1/2
2 2 2

w = [(°ca - ch) * (¢2 - ¢LL) cos Ocl]

where
! ' o o0

IR "°c1| and |¢z - lI are = 180
1t

!&, « -99998, then

V- cos™IE,,,

\Y Mise

ex - ¥, 1r 90° = [2|= 180° |
R = | tots
Y i 0= [p| = 90° |
vhere p 1s the clockwise difference of the azimuth fram(@, . #,) to (9, #,) end

& reference azimuth.

15—
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Awdliary Computations
Descriptive Quantities (Cont'd)
Azimuth from North of Vprojected on a plane normal to —;is
1 }"cos(Q t+¢)->’csin(Q t+¢)
- e e
Av = tan .
z cos9 - 5in6 [x cos(Qe t+@)+ 7y sin(Qe t o+ ¢)]
Cartesian inertial to launch centered inertial coordinate transformation
[— = — | M — - [~ -
ng -nxo -TIyo -nzo x -nxo _leo ‘nzo xo
e 1=1-C, <6, L,y ]-1-C, -6 ¢ y
Yg xo yO ZO xO yo ZO o)
P § -§ —§ ‘2 -§ -§ -§ z
z2g X Yo z, X, Yo 3, o]
L . L g i - il S
[- a— -t — o
v o |
x€ % Yo zo
v = —g - - y
ve % Yo %
S S i |
8 % Yo Ze
S - . - G p—

——
wvhere éo' 7? , 4 are the attitude vectors at launch.

Cross range miss distance (MC) and down range misc distance (Md) components of

total mis: distance (Mt) at impact (Fig. 9) are given by

]
. - o - g 2 [ - 3
B - o1nG,, oind.y + cosd,  cosh . co.,(¢i ¢L;J




Auxilisry Computations

Mise Distances (Cont'd)

It
’L’I : 'W} thm

] 1/2

wI.,I - [(OCI_ - GCL)Z + (¢I . ¢L)2 0082°CL
where
|°CI - OCI.| and |¢I - ¢L| are = 180°
It
EL 1= .99998, then

L]

- - o)
\y = COB 131.,15 o= \yL,I =180

L,I

EL,M = 8inQ,; 8ind,, + cosdy, cosds, cos(¢M - ¢L)

It
!L,M Z ,99998, then
\yL,M = [(OCM - CL)Z + (8 . ¢L)2 coszocn] 12
vhere
|OCM - OCL| end l ¢M - ¢L I are =180°
It

Bl w™ 99998, then

e
- . - -« O
‘fL,l! = COB 1‘!.,!4’ o= YL,M =180
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Migs Distances (Cont'd)

cos®,.. ein(g. - ¢ )
ol ; « oL o 7 %)
M % 3

(uinOCL conYL,I)-sinOCI .
: an,I - -

cosd, unTL’I

cosd,. sin(d, - ¢ )
'an,H"' ::n‘y ¢“ ¢L

LM E
(ai.nec& cos X ll) 8300, ; .
con Ty = |
~ cos@,, sin LN | ‘ I o i
eloM! = “1"7?;,," an,I - °°¢7?1,,g 'an,I?'m\y;,,u, N :

 cond! = [1 - .mzx;:] W

i
(‘i’L,I + M) - 900'1 ['mzﬁ ,_ !

N =r, [(\yy,x + X3)- 1.,1]
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FIGURE 9
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Miss Distances (Cont'd)

M =r M
¢ o'¢

t

2]J./z

2
M =[Mc +Md

Awdliary Computations

Page 25

vhere M, M& are central angles. Note that M, is positive to the left vhen

looking down range.

Orbital and Impact Approximations

For an elliptical orbit or an

€ cosﬁ.= [El_ﬁ_l!__ - 1
M
E= ‘rl —~
1 - ¢ cosE
. —
€ sinE = _r v
. A G

€ = {(e cosf:)2 + (€ sinE)

Perigee = A(L - e)-ro

Apogee = A(l + e)-ro

impact trajectory,

2]1/2

whevre € is the ellipsoidal eccentricity and E 15 the eccentric anomaly of the

. e a1 R
[ AR cinsile szLt;on.




Auxiliary Computations

Orbital and Impact Approximstions (Cont'd)

2x & 3/2
o

-1
Inclination = cos ~ (sinA, cosOcM)

Period =

N . /2
Velocity at apogee = 'rl 'Vl (1 - coe pI).
A(1 + ¢)

For an impact trejectory Rgp = AL - e)

Ree

1
€ CcO ] - —
“Fr Iy

1/2

€ sink; = - {‘2 - sc canT)z]

(¢ ainET)(e cosE) - (e cosET)(t sink)

ain(Bm-i)z.

(e canT)(c cosE) + (¢ sinnf)(c sin¥)

coa(l‘.T - !} = :{
‘T ~-F = tm‘l [M]
cos(!m -B)

Page 26
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Auxiliery Computetions

Orbitel and Impact Approximations (Cont'd)

Time of flight to impact and time of impacti are

I:&/z

z, o [RT-§+csinE»c:1nxr]

Inertial Cartesiean components of impect point are
Xqgy = XF + x€
Ygpr yt + y&

zm=£f+zg

vhere
r=i_§§ {ain(ET -E) +¢ 8ini"-csmk,r]

cos(E,, - E)-€ cosE

1 - ¢ cosE

8:

Azinmuth of impsct is

8in(180 -~ A_ )
A tan™t i ST
% = cos(180 = A’I) -

Page 27
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Orbitel and Iupact Approximations (Cont'd)

vhere ¢ - ¢)
co8e, sin -
sin (180 - A, ) = —2X It
“1 Ein\y

cos\y - sin Qc

| sin\y

sin OC 1

cos (180-Az)= L

I cos OCL

E\l’ = 8inQ,, 8106, + cO86,; 0BO,; coa(¢L - ¢I)
If ,

E.\f > 99998, then ¥ = [(°c1 - OCL)Z + (¢, - ¢L)2 COSZOCL]l/Z
vhere

I°CI - OCLi and | ¢ - L! are = 180°
Iz

E .:.99998,!’ = cos™IE o= ¥V = 180°

b 4 Y

Circular range to lmpact is
2x -\y; if 90” = !pl = 180°

CRIP =
Y10 0= |o] = 90

where p is the clockwise difference of impact azimuth and launch azimuth.
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Orbitsl and Impact Approximstions (Cont‘d)

I

it !?l =l or if the nlctile 38 in & hyperbolic orbit (i.e.

| %]? | L
. » 2), ali vrbital «2d impact quantities are set to zero.

Gy

Repy (redius of spherical earth impact) may be input directly or as a
height relative to the radius of the target [RSEI = t(¢T,OT,BT,EFHP)] or as a

height reletive to the cversge radius of the geoid (z~°).

e e R S

Velocity ILosses_and Impulse Calculations

St

Grevity loss

<
L]

t, . ;
g f g cosBI dat | _ | 4 :
ho!

3
3
(32
[}
R < PR

time at beginning of siage

ot
i

time at end of stege ‘ '
g = local gravity

p; = engle between r and geocentric local vertical (3)

S
v, = f 22 at
Y

i
Misalignuent loss l

t, F
v (2 _§_i~“ i
o= N (i - cowi) At
t

1l - " Ax




Auxiliary Commutations

VAL

Velocity Losses and Impulse Calculations (Cont*a)

Avarege specific impulse per stage

t, ¥
Y 2 £
T [Ez - 51] .[t N &

Total imaulse

fz
I‘I‘ = F§ 4at
¥
%
Ideal velocity per stage
, _ v,
Vi~ g I An (;gg)

wvhere &, is the nominal value of gravity, wtl is

at t.l.’ and vta is the weight of missile at tz.

the veight of migsile




Radur 8ite c-omtaticm

Distance from radsr site to polar axis is

Xgg = a% [rsIn °°"°cn + (bg + 8gq) msom]

where

Y
8 ccao
"R [1 + (1-2)® tmaoml

hR = altitude of radar site shove sea level

and

8 = geoidel separation at redar site

T = gea level redius at radmxr site

St
b¢R = longitude of radar, positive east
Distance of radar site above equatorial plane is
- rSLR + (ha 588) 81n0p,,

where
r51R R ("sxR

8ite Centered Certesian

£in8, cosd, ) (1 -e) tane.

DR

Ellipsoid centered cartesien jnertial coordinates converted to ellipsoid-

fixed rectangular with origin at redar (Fig. 10) are given by the following:

X, = X con\y + ¥y oin\'y

Yo = =X sin‘y +y col\y

TR N e

A Dt R iaffin s 1

%
m
™
EN
%

1 N
Bl



reference
ellipsoid
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TRACKER COORDINATES ON REFERENCE ELLYPSOID

FIGURE 10




Redar Conversions

L

Site Centered Cartesian (Cont'd)
M

where
W-WR+Q.'&

;‘ = {x, ~x, JainQ . - (2, - Z,g)C08@

°e AR AR
Yo = 7,
z, (xe - J\‘;en)s':«noAR + ('e 'cn)'mm
u-Xx,
Vey,+ wa R
v -G‘R . Fe + ;Q
vhere 8 = devistion from local verticsl, and sind =8
R "

u-ffcoau,+?nima
3

v-;ﬁa%+;co.ua

W sy

whereux-mglethmughvhichthoﬁ-?plmeismutc&tomm
azimuth eference
J'te =X ccu"y +y a:l.n\y + Q.'° Yo
ie = =X sin\y + ¥ coa\y -Q. "t x,
i.

K

Page 33
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Redar Conversions ;
Stte Centered Cartesian (Cont'd) 8
X, = *e sinQAR - ie cosQAR
5; ~ T, '
ie - X ﬁOIOAR + &, -mom %
- x
LIRS
Vs I, + 5‘ . ie

(vl -Ecos&«r ;ainnn

1

v = -Esinun-b v cosy
cC

VAR

Spherical Reder

Ellipsoid-fixed rectangular coordinstes converted to spherical (radar)
cooxrdinates (Fig. 12)

r. . 11/
R-l‘ vz+vaj

7 -
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Radar Conversions

Spherical Redar (Cont'd)

A= lin-l [—;—u—_ﬂf] - tln-l (%)l 0 Ag 2x

(u* + vz)

E =cost (% , OKELx
. 1 . & *
R =g (uwh+we )

vu - uv
(n* + v°)

A=

Doppler Radar

Radar cross-shaped doppler rates computed from ellipsoid-fixed rectangular

coordinates (Fig. 13)

-
=g t [(51 - 83) + 2(8,° -85+ 2 (8,3 - 533)]



Radar Conversions

Doppler Radar (Cont'd)

|
i
: [} [(zsl - 8,) + g_- (512 - 532) N g-(ol3 - 533)] '

+

- -1 K5
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Hadar Conversions

Doppler Reder (Cont'd)

: * % [v [(bz -9,) + 2 “za - °h2) "‘g (523 - 5'¢3’]

2 3 2 3
+"h[l+°l§+%bh +%6h] '“2[1"52*%62 *%GZ]]

{
where i
| 1, 2. .2 .2
. . (uui fﬁwi + wi) -3 (u1 +v© e ) %
i R
Redar L-shaped doppler position and rates computed from ellipsoid-fixed
coordinates (Fig. 13) are given by the following. Constants are delineated on
Page 52.
‘ 14
2 2 2 2 i
RE=u" +vV +w ;
" 11/2
RO- R+l(h-ul(l-vl(2-wi(3
. 2 - 1/2
Rl= R+F.-—-'..'..'{5,=v —-.-K7 : .

1/2

R T

PSS

o = K].G + 2}“13 + 2vlc1u + zwl(lj i :

B +R
(o} pA




Radar Conversions
Doppler Radar (Cont'd)

q=x20+m_17+2vxla+2wl(19 3
Ro + By

W(u - K, ) + ¥(v - “25) + w(v - Kyp)
= - i -

©

1.”""‘13*"”‘11»_“"“15 -p%

. U‘Kl’( + VKJ.B_"' wl(l9 -q Ro
q 52

Look Angles

Missile look angles from radar site are

L R R L IR R R L

-1
RIAL = cos :
[[(x -x )2y -y )4 (2 - zr)zjl

L -

(x-x)8 s -3 6 v e -2)C)
Eon, TN, T TR,

RIAZ = tan ™t [

|

|
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Look Angles (Cont'4)

where
X, o=x, cos(Qet + ¢r)

4

r = Xer Bin(Qet ! Sér) 5

2= 2
I er

P

Pitch and yaw look angles

BELIEL, ET

If RIAL = 90° or 270°

LAY = 90° with opposite sign of RLAZ
Iz |RIAZ| < 90°; AP = -90°
It |Ruaz| 2 90°%; wap = oc°

If RIAL £ 90° or 270°

tan RIAL = :OJBEKIJK

SR G e

= tan ™t [-(cosRIAZ)(tanRIAl)]
= tan™? [-(sinRIAz)(taan)]

5

LAY = IAY + 180°
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Look Angles (Cont'd)
If RIA2 > -90°
If RIAz < o°
LAP = - |"IA'F|
LAY = TAY + 180°
If RIAZ > 0°
| If RIAZ & $0°
LAP = - IITPI
LAY = TAT - 180°
If RIA2 > 90°
m=|m]
1AY =~ IAY - 180°
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Launch Az.imuth Estimation

1800,1 = 0

R 2

K+ K©Q, ) + K9 1, 450
° or, 2199 e

Iterate until loN - 0“"1l < .0003 radiauns

cos@y sin(¢,r - ¢L + Qe TFN

-1
8, = sia Frm
1/2
2 2
vy = -(xo + ¥, ) Qe cose,

/2 Q)
2 2 sine
vy = (xS +y)) e "

' 2
v_ = -v, + KSTO + KSTL(8) + K5T2(8)

£
I

X28TO + K25Ti(v.) + K‘ES‘I‘Z(vr)a

-1
, = cos [ainO 8100, + co8yy cOBUG, cos(¢T - ¢L + QeTFi)]

|

]

1y
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Initiaiization

Launch Azimuth Estimation (Cont'd)

Ko = 220.37

Kl = 20.621

K2=0.

11137.6
199. 4406
"08,‘8166

;

KST1

KST2

K2STO = 141.675
. 0062625

mﬂz = 0.

K2ST1

Launch Attitude

-l

To achieve launch vertical the § ) TI » C system is oriented such that
f points along the x direction, TI along the z direction, and 4 in the negative
y direction. The § R 7? ’ g system is rotated through longitude of launch, astronomic

latitude of launch, and the supplement of launch azimuth. (Fig. 15)

§ = § coa(—{lL - Qet) + 4 sin(-¢L ~Qet)

-y

7
C = - § sin(-¢L - Qet) + { c:os(-Q‘L - Qet)

=3}

¥ i Rt e Vo AR
crepe el SR



Greenwich

at t=0 =,

INITIAL ATTITUDE VECTORS

FIGURE 15
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Initiclization
Launch Attitude {Cout'd) ;
wa L o i
§ = S cos(-9,;) -N -m(-on) §
-ﬁ'- § sm(-eu) +—ﬁ"m(4u) %
. | i
¢, ¢ g
flnlly = | !
§ ¢

cos(AzL' - 180) - c'iin(AZL - 180)

Lo

el

40. -ﬁ' sin(A% - 180) + C'coo(AZL - 180)

Leaunch coordinate rotational gquantity, By is eatimated, if not specified, as

T 160 - A%,

Position snd VelocWents at Launch

st I o T PN

Sea level redius of lsunch (Fig. 16) is

[1 + (1-e)" tun"'em ]
rq, =

1/2

1+ (J,-e)1 tnnrem‘

M L] BRI RS L xS 1::
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Initialization

Position and Velocity Components at Launch (Cont'd) | i

Components of _z:;, and ?o are

¢
L]

s cos(¢L + Qe t) SLL cosdy, + (hL + ESL) coaODL'

o
[

sin(¢L + Qe t) 8LL coed, Lt (hL + GSL) conDL

I < s:.L L ¥ (B * ggp) sindy,

* = Yo Qe
Yo =% Qe
3 =0
o
The simulation may be started at an arbitrary point in space with FO,V; ,

fo, and ﬁo specified.

If the position and velocity components are given in a radar coordinate

system, the following conversions are meade:
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reference
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earth's -_— -/~ e —
surface 'hL
1
i normal to
] 851 | ellipsoid zeL

LAUNCH COORDINATES ON REFERENCE ELLIPSOYD

FIGURE 16




Initielization

Redar to Cartesian Coordinate Conversion

Ellipsoid - Spherical Coordinstes and Doppler Rates to Fixed Rectangular

u = R sinE sinA

v = R sinE cosA
W = R cosE

2 1/2
Roz [R +Kh-uKl-vK2-wK3]

- ] 1/2

2
Rl= R +K8-uK5-vK6-uK7

- 2 ]1/2

R2 = LR +K12 -ul(9 -vl(lo -lel

i K¢+ 2(uK1;+ vK)), + les)
P Ro * RJ.

Kyo * 2(“K1L+ VK g + “Klg)

RA + \rl.o
9] -

q=

=)
.
L]

R, b + B(R, - )

ee)
O
]

R, & +alR, - &)

D = Kp3(uKpy) + Kop(vKpg) + Kpy (v-Kpg)
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Initialization

Radar to Cartesisn Cuordinate Conversion (Cont'd)

[’&5(" "zs"“lu("“zs)]
"’.‘ = 13%? [K13("'K26)'K15(“'x2h)]

“ Tq [th(“'xzh)‘xla("'xzs)]

Doppler radar coefficients (see Fig 13)

K = 2(v;)
L = Z(Hl)

Ky = (4))% + (v,)% + (w)) .,412

{‘18(“’"‘26) Ky 9(v s ]

R oo
* T[Klggu"“zh)'xl7(""‘z6)] ¥

3 [t rigto)] + 5

RRO

" K23

" Koz

RS R




Initislization

Radar to Cartesian Coordinate Conversion (Cont'd)

Kll

x12

13
Ky
15

K16

=

L
Kis
19

20

21
2e

23

Ky = 2(w,)
K)o = &(vp)

2(w2)

(uzjz s ()% (uy)? =07

u, - ug
Vi~ %
Y1°%

2 oA
4 -4
u, - u

o
Yo = Y%
LR A

2 2

do - d2

KK - K7

Ky5Ky7 - Kigag

S TAST IR ST

1
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Initialization

Radar to Cariesian Coordinate Conversion (Cont'd)

Spherical coordinates and rates to ellipsoid-fixed rectangular coordinates

u = R sinE sinA
v = R 8inE cosA

w = R ¢cosE

U =R sinE ginA + RE cosE sinA + IJ\ 8inE cosA

<
n

R sinE cosA + RE cosE cosA - RA sinE sinA
R CO8E - RI:! sink

3
it

P

Site Fixed Cartesian Coordinate and Rate Transformation to Inertial System

[ §‘l rcosuR -SiD‘LR 01 r.u’
N1 o= leiney cosuy o v
Le] L o7 L
- - - o ar -
§: cospg i T 0 u
7] = | sioug cosp, 0 v
' 0 0 1 W

W

12

[ep—

F R 1 L s

Mot sfd | vy

Az sy %1ﬂm‘,¥i?mmmmwwnw, .

b ey

B

_ (Y > e




Initialization

Radar to Cartesian Coordinate Conversion (Cont'd)

1 -
xe sin@m 0 conﬁm a
Ve = o 1 0 B
bz.e A 'COSDR 0 ainem | Lr
and . - - ™ -
X cosom 0 ainODB Q
. | = 0 1 0 B
Lze ] -sinom 0] COBGDR -r
ccs(Qe T+ WR -ain(Qe t+ 5¢R)
T = sinme t+ 6¢R coa(Qe t + I5¢R)
0 0

—cos(Qe t + 8¢8.) -sin(Qe t o+ b#R)
V- sin(Qe t + 6¢R) coa(Qe t+ b¢R)

0 0

-

Attitude from Angles of Attack

X
€er

z
er

+ Q2

Pugc S4

-y

b 4

| ©

The following conversions are made to initialize the atiitude of the missile

when ap end ay are known:
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b egbd g

e Sl 0

Injitialization

Attltude from Angles of Attack (Cont'd)

R A
£ .o
° Il
&

I > 1/2
sinf =1 - cos B

R
n
3
&
f——
Q
2
Q
rry
]
i
~

+ siu;y .

oVl

Page 55




Page 50

Infitislization
Tie Dqgg

Derivatives of equations of motion to maintein vertical ettitude during

lzunch hold down are computed from
“ =" (£z) - §2
@, == (gz) Y.
usy - - (nz) . Q

-]
¢
e

'\?--(Qe)z-[

el B
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APPENDIX A

Symbol Definitions

Seml-major axis of reference ellipsoid.

Azimutbh of launch, measured clockwise from north.
Wind azimutli, mcasured clockwise from north.

Semi-minor axis of reference ellipscid.
Speed of sound.

“ebuler dreg cocfficient.

Ellipticity of reference ellipsoid = &2

Bceentricity = gfj where C is the distance from the center
A .

of the ellipsoid to a focus along the major exis.
Gravitational Acceleration.
Longitude.

Astroncmic latitude, engle between the eguitorial plane and
the local direction of gravity.

Geocentric letitude, engle between the equatorial plane and ¥.

Geodetic latitude, angle between the equatorial plane and the
normal to the reference ellipscid.

Multiplier for tebular thrust Fo.

Vind perturbation multiplier.

Multiplier for tsbular mass flow rate 1'40.

Multiplier for tabular pitch rate.
Multiplier for tabular roll rste.

Multiplier for tabular yaw rate.

[T SN
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APPENDIX A (Cont'd)

Mass of misscile.

Reference initial mess for abletlion computation.
Mach number.

Atmospheric pressure.

Dynemic pressure.

Atmospheric density.

Missile pcsition vector whose componenis are x,y,z.
Avcrage radius of geoid (spherical approximation).
Missile cross-sectional area.

Atmospheric temperature.

Longitude.

Tabular wind velocity.

Components of missile's velocity vector Vi
Reference ellipsoid's rotation rate,

Angular rotestional rate about respectively pitch, yaw and
roll axes.

Respectively pitch, yaw and roll rates from the guidance

progran.

A-2



Page B-1
Revised 6/20/62
APPENDIX B
Itecation

Two general schemes of iteration are used. The first, called (for lack of a

better name) "paired function", requires that each paremeter to be determined
be peired with a function to be constrained. The second form of iteration,
termed "matrix", does not require pairing of the functions end paremeters but

does not cllow minimizing or meximizing of functions,

In either type of iteration, control of the portions of ¢ trajectory over which
iteration is to take place is provided. The control system allows "nesting" of
"paired function" sets within other "paired function" or "matrix" sets. This
capability cllows combination of the strong peints of the two general schemes
cccording to the needs of the individual problem.

Paired Functions

After an initisgl trei*actory is integrated, a perturbation is added to the para-
meter in question ord i.other trajectory is integrated. Inverse La Grangian
interpolation or extripo.. . n is then used to estimate a new valye for the
perameter. (The desii-A vriue of the function is used as argumeni) The traj-
ectory is again integraeted and the results eneble the use of a higher order
polynomial in the interpolation or extrapolation procedure. The process is used
repectedly until convergence. The polynomiel order may be limited by input, or
in any cese at crder 5.

If minimization or maximization is calied for, a second perturbation is added to
the parameter and & third trsjectory is produced, La Grangien interpolation is
then used in a "step-snd-bisect' iterative procedure which determines minimum or
neximum for the polynomiel fitting the eveallalle points. If no asinimum or mexi-
mum 16 &vailable, another perturbetion is added to the perameter. In either case
another trajectory is produced and the new point is used to enable a higher order
polynomicl to be used in the "step-snd-bisect” sclution. Agaein the La Grangian
polynomisl order may be limited by input, or at order 5.

—
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Pajred Functions (cont'd)

The 'btep-and-bisect” process is said to converge vhen the improvement in the
function is less than one half the (input) accuracy requirement. The function
maximization (minimization) is complete vhen the difference between output of
the "step-and-bisect" procedure and the previous value of the function is less
then the (input) accuracy requirement.

B e YR A s e

MATRIX Iteration

The Newton-Rephson method for iterative linsar differential correction may be
stated in its matrix form:

h o 1 SIS A
o

X

»
-~

(1) -AY = 5!2 ) A X

. a Y
. [ ] (] ® — -....._.m .
X
g n

L O

- - -

Wher~» LXY! cunsists of the differences from desired conditicns, and[?kX]

is the

suégesmcd chenges to the peremeters in question.

The 1:1tic)l acrivative elements Yi may be replaced by their finite difference
X
cquivelents, Z§¥1t1 . In the N-SLAGE Yrc 'rrm, 1n order to engble the use c¢i the
bX
Generclized Secent Method, the resultent equation is re-written es two equations in
the couivalent form:

- - o — - -~
Y
AYl,l o 1,2 . . e o
: ‘ 'A\I = ¢ P
AY ,l L]
' Pt [BYm,n
— L — —




e - pe— — e "1
l;xl o. . . . .
(3) |OX = ?
0 AX, '
. |
L__ o] g . . . A xn__ S __]
Where AYi 3 indicates the difference in Yi produced by a change AX 3 in X 3.
’

The elements £§Yi’d are obtained by repeatedly integrating the trajectory with ¢
each of the parameters in question perturbed in its turn. The elements LSXJ of
the diagonal matrix (3), ere the perturbction values. The elements of[AY and
[?SYi;] are divided by normulizing elements N1 (vhich sre input quentities) in
order to scale, or establish dimensional homogeneity.

The first equation is solved for | P ] in a "least squores"* sense, vhich allows
the general case, myn. The multiplication implied in the second equation is then
performed, yielding the set [?5;] , the eleuents of which are added to the apprc-
priate parameters. -

After o solution of the above sort is accomplished, and the trajectory representing
the suggested peremeters integreted and found to be still unconverged, the Generalized
Secant Method may be utilized to improve the convergence without integrating the num-
ber of trajectories (n), necessary to recompute the matrices for equations (2) and
(3). In this method a new column,consisting of the negative of the normalized
(sceled) deviations from conditions at the previous nominal trejectory integration,

is appended to each mu:rix as the first column, and is added to each of the remaining
columns, producing matrices with one more column than the previous matrices.

e—— T o _ e — -
N o A ,7OY - [
e N ‘ ‘ P
L_ 3 . : o Aty n QYo 4L .

*Uee ALSLF, Generul Linecr zquation Solver by DU. D. Morrison, Sept. 24, 1959 (CDRC
©mputer subr.outine).
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The processi may be used repeatedly, each time defining the previous trejectory to
te the wrevious nominul trajectory.

The last column may be deleted after any number of additional columns have been
accumulated.

A satisfae:tory rationale for deletion or non-deletion of the last column is not
presently aveilable, but experience indicates that the last column should bde kept

if the number of functions is approximately equal to the number of persmeters (m=n),
end deleued when the number of functions is markedly greater than the number of
peroceters (mjn). Tests with m and n initially equal to 3 have shown a 20§ increase
in et'ficiency when thc matrices sre allowed to expand indefinitely.

In particular, when inaccuracies due to system non-linearities (round-off error
accumulations, integration truncation error, staging condition annomalies, etc.)

aﬁe or che order of the iteration convergence accuracies required, it has been found
necesstry to :1llow the matrices to expsand in order to gain convergence.

An add!licnul adavantage of the Generalized Secant Method is thet perturbation delta
magnitudes vu.ime a less dominant role in convergence efficiency. 1In many ceases
converger.ce ‘s worsened by a Newton-Raphson solution because of erroneous partial
derivetive information due to improper perturbation sizes. In such cases it is not
uncommon to find that the Generalized Secant Method can proceed to convergence.

The Generulized Seéant Method is used repeatedly, until the gein in one step is less
“han “ne input guentity SCGN. (The gain is measured as the ratio of the summations
¥ the squeres of the elements of the normalized error vector[[kf] , for iwo successive

.1t n ooveluation pesses.) Thus, if eny solution pass (whether ‘he solution comes

Best Available Copy
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from Newton-Rephson or Generalized Secant Mcthod) is not materislly better thean the
previous solution or nominal pass, the program recomputes the matrices dy perturda-
tion methods. Note. that if SCGN is a very lerge number, the Generalized Secant
Nethod is not attempted. '

Eigenvalues associated with the solution of equation (2) or (4) ere printed folloiing
each eveluation. These Eigenvalues are of use only if it is understood that they: are
for the metrix transpose multiplied by the matrix, and it should be remembered that the
elements are scaled. The ratio of the largest Eigenvalue to the smallest (known as the
condition number) is scmetimes a clue to the degree of linear dependence in the matrix.
A possidbly confusing issue is that the overall perturbation in the column essociated
ith a particular Bigenvalue also affects the condition number. Zero Eigenvalues

should not be found for a Newton-Raphson solution, but are often found for a Generalized

Secant Method solution. In fact, usually only (n) Eigenvalues are large enocugh to have
eny effect, even though the matrix has been allowed to expand consideredbly larger than

the original (n) columns.

In any cuse, the Eigenvalues are ossociated with input paremeters in reverse order to
their printing. That is, the last Bigenvalue is associated with the first iteration

variasdble.

» matrix iteration is determined to have converged on either of two criteria.
1. The error in each of the functions is less than the corresponding accuracy

requirement.
2. The chenge in the error (for each of the functions vhich fails the first

criterion) is less than one hcif the corresponding accuracy requirement.

The chonge is mensured from the previous solution or .the nominel trajectory.
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